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A B ST R A CT 

Mapania (Cyperaceae) is a pantropical genus associated with the forest understorey. Its evolutionary history and species delimitation are poorly 
known in Southeast Asia. To address this lack of knowledge, DNA sequence data from four chloroplast regions (trnL-F, atpH-F, psbA-trnH, and 
trnK-matK) were generated for a number of populations of 15 species of Mapania. Bayesian and maximum likelihood analyses of the concaten-
ated regions showed a better-resolved phylogeny than previous analyses based on morphological data alone. Mapania bancana was resolved as 
the sister to the other species of Mapania included in the study. Moreover, this study highlights the need for further investigation of the species 
limits in this genus. For instance, Mapania cuspidata is retrieved as polyphyletic, and a tentative new species has been detected closely related to 
Mapania debilis. This study also infers the cradle of the Southeast Asian Mapanias in Borneo, which also holds the largest diversity of the genus 
in the region. Mapania is still a poorly understood genus that requires further local taxonomic work and more comprehensive fieldwork records 
to better assess and protect these species.
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I N T RO D U CT I O N
Cyperaceae (sedges) are the third-largest monocot family with 
>5600 species in 95 genera (Larridon 2022). Two subfamilies 
are recognized, Mapanioideae and Cyperoideae (Muasya et 
al. 2009, Larridon et al. 2021). Subfamily Mapanioideae (two 
tribes, 10 genera, ~185 species) is the relatively species-poor 
sister lineage to subfamily Cyperoideae (two tribes, 85 genera, 
~5400 species; Larridon et al. 2021). Tribe Hypolytreae com-
prises four genera of mostly forest-dwelling sedges and is widely 
distributed throughout the tropics: Hypolytrum Pers., Mapania 
Aubl., Paramapania Uittien, and Scirpodendron Zipp. & Kurz. 
Mapania, the most biodiverse, is a pantropical genus of ~100 
species which occurs in rainforests, mainly at low elevation, a 
habitat that is globally threatened (Bowler et al. 2020, Larridon 
et al. 2021). Many species of Mapania are regionally endemic, 
narrowly distributed, and of conservation concern (Shabdin 
et al. 2013a, b). Several species of Mapania are used in basket- 
and mat-making, while others are utilized by local people for 

medicinal purposes, including as a fever remedy (Simpson and 
Inglis 2001).

The greatest diversity in the genus occurs in Borneo with 39 
species (Fig. 1), of which 26 are endemic (POWO 2023). Recent 
work in Borneo, especially Sarawak, has highlighted this diver-
sity, with 16 new species, and a new variety of Mapania cuspidata 
(Miq.) Uittien described since 2013 (Shabdin et al. 2013a, b, 
2016, Miraadila and Shabdin 2016, Miraadila et al. 2016a, b, 
Melana et al. 2023). Melana et al. (2023) suggested that up to 
60 species may be present in Borneo. Nevertheless, our overall 
knowledge of the genus is still limited due to a lack of detailed 
systematic studies shedding light on complex species delimita-
tion. On the other hand, Peninsular Malaysia has more limited 
diversity, with only 18 documented species, of which only three 
are not present in Borneo (POWO 2023): Mapania holttumii 
J.Kern, M. kurzii C.B.Clarke, and M. micropandanus Holttum.

A morphology-based cladogram by Simpson (1992) pro-
vided the first phylogenetic hypothesis for the genus. Definition 
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of species within Mapania remains challenging due to insuffi-
cient discontinuous morphological attributes. The Southeast 
Asian specimens are particularly difficult in this respect, with 
some species comprising several morphologically complex infra-
specific taxa. This was shown by Simpson (1992: 117), where 
a principal coordinates analysis of the varieties of M. cuspidata 
was carried out, demonstrating the morphologically ill-defined 
nature of these varieties, except for var. pumila (Uittien) Uittien 
which was recognized as a separate species.

Molecular phylogenetic studies of Cyperaceae, including 
species of the subfamily Mapanioideae, were initiated based on 
plastid DNA utilizing rbcL gene sequences to examine higher-
level relationships in the family (Muasya et al. 1998, Simpson et 
al. 2003). Other studies followed using more rapidly evolving 

markers such as ndhF, trnL-F and ITS (Starr et al. 2003, Hirahara 
et al. 2007, Jung and Choi 2010, Mesterházy et al. 2022), with the 
most recent phylogenomic framework established by Larridon et 
al. (2021). Meanwhile, studies at tribal and generic level for the 
subfamily Mapanioideae have, to date, used plastid markers such 
as rps16 and trnL (Muasya et al. 2009). Although these studies 
have provided a better understanding of within- and between-
tribe relationships, resolution and sampling within Mapania re-
main low.

In this study, we use four molecular markers, trnL-F, atpH-F, 
psbA-trnH, and trnK-matK, to infer the phylogenetic relation-
ships among the species of Mapania that have been described 
under two sections in the genus, section Pandanophyllum 
(Hassk.) Benth. & Hook.f. and section Thoracostachyum (Kurz) 

A C E

B D F

Figure 1. Morphological diversity of Mapania in Southeast Asia. A, young lateral shoot with the characteristic salmon-pink colour of Mapania 
cuspidata var. petiolata. B, inconspicuous unispicate inflorescence of Mapania cuspidata var. petiolata. C, habit of Mapania cf. palustris. D, 
capitate multispicate inflorescence of Mapania cf. palustris. E, habit of Mapania wallichii. F, unispicate inflorescence with large spicoid bracts of 
Mapania wallichii. A–B, coll. number ZINN 68. C–D, coll. number ZINN 75. E–F, coll. number ZINN 97.
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T.Koyama. We use these molecular data as a foundation to better 
understand species delimitation and biogeographical history of 
Mapania in Southeast Asia.

M AT E R I A L S  A N D  M ET H O D S

Taxon sampling
Ninety-one accessions representing 19 species of subfamily 
Mapanioideae [Mapania, Paramapania radians (C.B.Clarke) 
Uittien, and Hypolytrum nemorum (Vahl) Spreng.] were col-
lected in the field from Malaysia. Mapania sect. Thoracostachyum 
is only represented by M. bancana (Miq.) Ridl. in the study, 
whereas the rest are assigned to sect. Pandanophyllum. Voucher 
specimens were obtained for every species from each popula-
tion encountered and deposited in K, RNG, and SAR herbaria 
(Thiers 2024). Fresh leaves (5–10 g) were harvested per ac-
cession and dried in a zip-locked plastic bag containing ~80 g 
silica gel. Detailed information about the accessions is given in 
Supporting Information Appendix S1. One accession of Carex 
microglochin Wahlenb. (subfamily Cyperoideae, tribe Cariceae 
Dumort.) from GenBank was used as the outgroup.

DNA extraction and amplification
Total DNA was extracted from material collected in silica gel 
(Supporting Information Appendix S1). The modified CTAB 
method of Doyle and Doyle (1987) was used but extractions 
were precipitated in isopropanol for 1 week, before proceeding 
with the next extraction steps.

Selection of markers was based on previous phylogenetic 
studies in the family that have proven suitable for species delimi-
tation (e.g. Starr et al. 2003, Hirahara et al. 2007, Jung and Choi 
2010). The markers trnL-F, psbA-trnH, atpH-F, and trnK-matK 
were each amplified using the following forward and reverse 
primers: trnL-F (Taberlet et al. 1991), psbA-trnH (Sang et al. 
1997), atpH-F (Lahaye et al. 2008), and trnK-matK (designed 
for this study, Table 1). The polymerase chain reaction (PCR) 
was carried out in 50-μL volumes for bidirectional sequencing 
and 25 µL for unidirectional sequencing. After some experi-
mentation, optimum results were achieved using 2 µL of tem-
plate DNA, 1× NH4 buffer (Bioline), 2 mM MgCl2, 0.2 mM 
dNTPs, 0.2 mg/mL BSA, 0.35 μM of each primer and 1.5 units 
of Taq DNA polymerase per 50-µL reaction. Amplification was 

done on an Applied Biosystems GeneAmp 2700 thermal cycler 
(Applied Biosystems, Foster City, CA, USA) using the following 
programme for atpH-atpF, trnL-trnF, psbA-trnH, and trnK-matK 
primers: an initial denaturation of 2 min at 94°C, 30 cycles of 
30 s denaturation at 94°C, 1 min annealing at 48°C, and an ex-
tension of 1.3 min at 72°C. A final extension of 7 min at 72°C 
was also included.

PCR products were loaded onto 1% agarose gels containing 
ethidium bromide and subjected to electrophoresis at 5 V/cm 
for 45 min. Bands were visualized under UV light. Size and ap-
proximate concentration were estimated by comparison with a 
known concentration of Hyperladder1 (Bioline™) size markers. 
For taxa that amplified poorly, several reactions were pooled 
prior to cleaning in order to concentrate the PCR products.

PCR products were sent to Macrogen (Korea) for purifica-
tion and sequencing. Sequences were edited and aligned using 
Muscle v.3.8.425 (Edgar 2004). The alignments were then op-
timized manually in Geneious v.11.1.2 (Biomatters, Auckland, 
New Zealand).

Phylogenetic analyses
We reconstructed the phylogenetic relationships of the spe-
cies by concatenating all amplified region alignments. We 
used ultrafast bootstrapping (UFBoot) and Shimodaira–
Hasegawa approximate likelihood ratio test (SH-aLRT), and 
Bayesian inference. We ran IQ-TREE v.1.6.11 (Nguyen et al. 
2015) setting the parameters to 1000 replicates of UFBoot and 
SH-aLRT, also checking for the overestimation of the UFBoot 
branch support through the hill-climbing nearest-neighbour 
interchange search (NNI; Hoang et al. 2018). Best-fitting 
substitution models were given by the ModelFinder option im-
plemented in IQ-TREE (Kalyaanamoorthy et al. 2017). These 
substitution models were used in the Bayesian inference ana-
lysis in MrBayes v.3.2.6 (Ronquist et al. 2012). Since some of 
the models were not allowed in that software, we used GTR 
as suggested by the manual. We ran four Markov chain Monte 
Carlo (MCMC) simulations for 5 million generations, sam-
pling every 1000 generations and with 20% as the burn-in par-
ameter. The runs were examined in Tracer v.1.7.1 (Rambaut et 
al. 2018) to check for convergence and a high effective sample 
size (ESS). A consensus 50% majority rule tree was generated 
for all the matrices.

Table 1. List of primers used for amplification of chloroplast DNA regions and intergenic spacer of Mapania samples.

Marker Primer Direction Sequence 5ʹ–3ʹ Citation

atpH-F atpH F GCTTTTATGGAAGCTTTAACAAT Lahaye et al. (2008)
atpF R ACTCGCACACACTCCCTTTCC Lahaye et al. (2008)

trnH-psbA psbAF F GTTATGCATGAACGTAATGCTC Sang et al. (1997)
trnHR R CGCGCATGGTGGATTCACAAATC Sang et al. (1997)

trnL-F c F CGAAATCGGTAGACGCTACG Taberlet et al. (1991)
f R ATTTGAACTGGTGACACGAG Taberlet et al. (1991)

matK matK F1 F TTGGTTCAAATCCTTCAATGC This study
matK F2 F TCTTTGCATTTATTGCGATTC This study
matK R1 R GAAAGGATCCGTGAAGAACC This study
matK R4 R TCGAACATAATGCATGAAAGG This study
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Divergence time estimation
We generated an alignment with one tip per taxon, selecting 
those specimens with longer sequences and less uncertain posi-
tions in the DNA matrix (Supporting Information Appendix 
S2). Specimens belonging to polyphyletic species were selected 
based on their morphological proximity to their respective type 
specimen. The analyses were configured on Beauti v.2.6.2 and 
carried out using BEAST v.2.6.2 (Bouckaert et al. 2019) set with 
a lognormal clock and Yule speciation process. One secondary 
calibration was used at the crown node of the family based on 
previous results from Spalink et al. (2016) and Larridon et al. 
(2021). Those studies showed a similar estimation for the crown 
of the Cyperaceae with an estimate of 85.99 Mya vs. 85 Mya 
(95% Highest Posterior Density = 77–89 Mya), respectively. 
Therefore, we used a secondary calibration following a normal 
distribution with a mean of 85 Mya and a standard deviation of 
5 Mya to include the uncertainty range in Spalink et al. (2016).

We conducted additional analysis sampling only from the 
priors to check whether the data might be overriding the set 
information. Moreover, we also tested exponential clock and 
birth–death process models to assess for any difference in the 
estimations. Every analysis was configured to run four MCMC 
simulations of 500 million generations, sampling the parameters 
every 5000 generations.

The output was examined in Tracer v.1.7.1 (Rambaut et al. 
2018), which showed the chains reached the stationary plateau 
after around 100 million generations. Therefore, the burn-in 
parameter was set to 20%. The files from the different runs 
were joined into one using LogCombiner v.2.6.2 (Bouckaert 
et al. 2019) and a consensus of the trees was calculated using 
TreeAnnotator v.2.6.2 (Bouckaert et al. 2019) selecting the me-
dian values for node heights.

Biogeographical analyses
Species distributions were obtained from the Plants of the 
World Online database (POWO 2023). Since the ingroup is 
mainly distributed in Southeast Asia, which has undergone ex-
tensive geological changes and complex land bridge systems 
through time (e.g. de Bruyn et al. 2014), we coded the region in 
nine areas: Indochina plus Indian subcontinent, tropical China, 
Borneo, Java, the Malay Peninsula, the Philippines, Sulawesi plus 
the Maluku islands, Sumatra, and Papuasia plus Australia. We 
estimated the ancestral areas using the package BioGeoBEARS 
(Matzke 2014) as implemented in R (R Core Team 2023). 
We tested DEC (dispersal–extinction–cladogenesis; Ree and 
Smith 2008) and DIVA (dispersal–vicariance analysis; Yu et al. 
2010) models for the analysis, and added a free j parameter in 
two additional models to test for founder speciation events. We 
did not consider any temporal stratification model or distance 
matrix between the areas (i.e. x parameter) as the Sunda shelf 
has undergone multiple sinking and emerging events over time 
(Hall 2013, Morley 2018).

R E SU LTS

Chloroplast analysis
The consensus tree based on all four chloroplast DNA re-
gions produced a well-supported phylogeny, providing a 

better resolution compared with the single-region tree. The 
results of the combined analysis show Mapania as mono-
phyletic, with M. bancana as an early diverging species in 
Southeast Asian Mapanias (Fig. 2). However, the support 
for that clade relative to the other specimens included in our 
study is only poorly recovered [0.90 posterior probability 
(pp), 74% SH-aLRT, and 74% UFBoot]. Nevertheless, this 
lineage is moderately supported (0.95 pp) in the one tip per 
taxon phylogeny (BEAST analysis, Supporting Information 
Appendix S2). Other lineages with unclear relationships in 
the phylogeny are the following clades: Mapania sapuaniana 
Shabdin plus M. sessilis Merr. with 0.94 pp, 75.3% SH-aLRT, 
and 61% UFBoot support, M. cuspidata var. angustifolia 
(Uittien) Uittien (1 pp, 90% SH-aLRT, 94% UFBoot), and 
M. enodis (Miq.) C.B.Clarke plus M. cuspidata var. cuspidata 
(0.93 pp, 22.8% SH-aLRT, 50% UFBoot). This last pair of 
taxa are not inferred as sisters in the one tip per taxon phyl-
ogeny (Appendix S2).

Biogeography and divergence time
The Southeast Asian Mapania lineage was inferred to 
have originated in the Miocene, around 17.76 Mya (95% 
Highest Posterior Density: 9.07–32.75 Mya, Supporting 
Information Appendix S2). Overall, the region corres-
ponding to current Borneo is the most probable ancestral 
area of this clade in all the biogeographical models (Fig. 3). 
We detected the Malay Peninsula and Sumatra, or an exten-
sion of the region with Borneo (former Sunda) as another 
subcentre of diversification within the lineage. The analysis 
in BioGeoBEARS (Table 2) suggests DEC as the best-fitting 
model, with and without considering the founder effect par-
ameter j. As the founder effect was inferred to be extremely 
low in those models (j = 1 × 10−5), we selected the simplest 
DEC model as the most suitable and will be used for the 
discussion hereafter.

D I S C U S S I O N

Systematic implications
The species M. bancana (sect. Thoracostachyum) is sister to 
the rest of the species of Mapania included here, holding a 
similar position to the one inferred in the phylogeny con-
structed using only morphological data by Simpson (1992). 
Morphologically, the characters that separate section 
Thoracostachyum from section Pandanophyllum are the 
paniculate inflorescence and hard, non-fleshy fruits (Koyama 
1959, 1961, Kern 1974, Goetghebeur 1986). Thoracostachyum 
has been treated as a genus by some authors (e.g. Kern 1974, 
Goetghebeur 1986) but others have treated is as infrageneric 
taxon within Mapania (e.g. Koyama 1959, 1961, Simpson 
1992). The phylogeny in Simpson (1992) showed it to be a 
paraphyletic group but DNA sampling of more species needs 
to be carried out to obtain a better understanding of its taxo-
nomic status.

Morphologically, M. multiflora Shabdin shares characters 
in common with both sections under study: a paniculate in-
florescence and seven floral bracts as reported in section 
Thoracostachyum and linear-oblong leaf-blades with a 

D
ow

nloaded from
 https://academ

ic.oup.com
/botlinnean/advance-article/doi/10.1093/botlinnean/boaf001/8003579 by R

oyal Botanic G
ardens Kew

 user on 09 February 2025

http://academic.oup.com/botlinnean/article-lookup/doi/10.1093/botlinnean/boaf001#supplementary-data
http://academic.oup.com/botlinnean/article-lookup/doi/10.1093/botlinnean/boaf001#supplementary-data
http://academic.oup.com/botlinnean/article-lookup/doi/10.1093/botlinnean/boaf001#supplementary-data
http://academic.oup.com/botlinnean/article-lookup/doi/10.1093/botlinnean/boaf001#supplementary-data
http://academic.oup.com/botlinnean/article-lookup/doi/10.1093/botlinnean/boaf001#supplementary-data


Southeast Asian Mapania phylogeny • 5

pseudopetiole found in some species of section Pandanophyllum. 
This could point to an apomorphic change of floral bract 
characteristics in Pandanophyllum and multiple origins of 

pseudopetioles in the genus. Further sampling of section 
Thoracostachyum is needed to test sectional classification and 
allow assessment of character evolution.
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The lineage comprising M. sapuaniana, M. sessilis, and M. 
cuspidata var. angustifolia has not been resolved in the phylogeny 
(Fig. 2). Although further studies will be required to improve the 
phylogenetic placement of these species, they are placed within 
sect. Pandanophyllum.

Mapania tenuiscapa C.B.Clarke formed a monophyletic 
group and shared the most recent ancestor with M. holttumii. 
Some specimens previously identified as M. tenuiscapa (ZINN 
22 and ZINN 23) were recovered in another clade, sister to 
M. debilis C.B.Clarke (Fig. 2), despite being morphologically 
similar. The unknown species has shorter leaves than those of 
M. tenuiscapa when compared a posteriori. The fruit is ellipsoid, 
with a conical stipitate base that resembled M. tenuiscapa, but 
smaller in size. The included specimens are separated by rela-
tively minor morphological characters. However, the spe-
cimens did not belong to the same group as M. tenuiscapa. 
Therefore, these samples might represent a new species, but 
the decision requires further study of morphological charac-
ters, especially when the inner part of the inflorescence has 
already matured into fruit, providing less information on the 
floral bracts, stigma, and anther size.

Mapania cuspidata is a species with four varieties [vars 
cuspidata, angustifolia, petiolata (C.B.Clarke) Uittien and 
merayap Miraadila, Shabdin & Meekiong]. Three of these ap-
peared in different lineages of section Pandanophyllum, while 
vars angustifolia and merayap were resolved in the same clade. 
Mapania cuspidata is a highly variable species and has been 
proven to be difficult to differentiate due to the overlapping 
morphological variability in characters commonly used to sep-
arate the varieties (e.g. leaf length and width). Such a striking 
result highlights the need for further investigation into this and 
other taxa in the section, as the diversity of species of Mapania 
has been underestimated. These results could point to the need 
of elevating to species rank some of those varieties, but such a 
conclusion requires further taxonomic and genetic work. Since 
this study used chloroplast DNA, some of those varieties could 
be hybrids, being placed within the clades of the plastid donor. 
For instance, some samples of M. cuspidata var. petiolata are 
clustered with M. cuspidata var. cuspidata and not with the rest 
of the samples from that variety.

Biogeographical history of the lineage
We detected the centre of biodiversity and the origin of the 
Southeast Asian sections of Mapania in present-day Borneo, and 
a secondary region that includes the Malay Peninsula (Fig. 3). 
This suggests a Sunda origin for most of the species and con-
tinued diversification after the posterior sinking event of the 
Sunda shelf (Hall 2013, Morley 2018), pointing to what may be 
considered two subcentres of diversification in Southeast Asia: 
east Sunda (Borneo) and west Sunda (mostly Sumatra and the 
Malay Peninsula). Such an inference is compatible with a scen-
ario of lowland forests connecting both areas, which has been 
estimated for those periods, including the Miocene (Morley 
2018 and references therein). Therefore, Mapania could have in-
habited larger areas of the Sunda ancestral forest and diversified 
under local conditions (e.g. within mountain ranges) or through 
vicariance to later expand their distribution as the Sunda 
shelf partially emerged or submerged over time (Hall 2013). 

However, this study is focused on the Malay Peninsula species, 
and the addition of more species and further systematic work 
for the genus may show new subcentres of diversity that could 
add relevant information about the natural history of the lineage 
and elucidate dispersal routes out of Sunda into the Sahul region 
through Wallacea. For instance, a northern Sunda subcentre 
may be possible, as Vietnam hosts several endemic species that 
have not been included in this study [M. balansae (E.G.Camus) 
T.Koyama, M. nudispica T.Koyama, M. tamdaoensis N.K.Khoi, 
and M. tonkinensis (E.G.Camus) T.Koyama; POWO 2023].

Conservation priorities
There is an urgent need for biodiversity conservation, espe-
cially in tropical areas, due to a combination of climate change, 
deforestation, and lack of legal protection (Bowler et al. 2020). 
Only three species of Mapania from Southeast Asia have 
been included in the IUCN red list (IUCN 2023): M. enodis,  
M. longiflora C.B.Clarke, and M. tonkinensis. Mapania 
tonkinensis is evaluated as Data Deficient (DD), while the 
other two are considered Least Concern (LC). However, 
there is no curated georeferenced information about the 
distribution of these species, with all three taxa being con-
sidered to have similar threats, and only M. enodis is con-
sidered to have a declining population trend. Thus, this 
information is highly deficient and in need of an urgent, 
more detailed evaluation to accurately assess the future of 
species of Mapania so that they can be included in conserva-
tion programmes.

This work highlights undescribed diversity within 
Mapania and the further need to continue with systematic 
studies in Southeast Asian sedges. Only after extensive add-
itional fieldwork to complete the gaps in knowledge will 
it be possible to obtain a comprehensive understanding of 
the diversity and distribution of and threats to Mapania in 
Southeast Asia.

Future directions
This study posits future lines of study on the genus Mapania. 
The inclusion of Southeast Asian species has allowed a better 
understanding of systematics of the genus and has also shown 
the need for including additional species of Mapania into more 
comprehensive molecular work. Moreover, it highlights aspects 
of what is known about these species, as reconsiderations are 
required in the concept of some taxa due to their polyphyletic 
placement. Mapania cuspidata demonstrates the importance of 
including specimens from different populations and infraspecific 
taxa to enhance our knowledge about possible cryptic species. 
Future studies will have to address the reasons underlying the 
reported taxonomic complexity. For instance, genomic traits, 
such as polyploidy, can be followed by an increase in the spe-
cies distribution range or ‘invasiveness’, as they can develop pre-
adaptations to new environments (Ellstrand and Schierenbeck 
2000). Thus, a thorough investigation of the traits defining 
species and their evolutionary history would be immensely in-
sightful for this ecologically and economically important genus. 
The need for further taxonomic and evolutionary studies is re-
inforced by the number of species that have been recently de-
scribed for the region (Shabdin et al. 2013a, b, Miraadila and 
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Shabdin 2016, Miraadila et al. 2016a, b) and the results of this 
study, where a few putative new species have been detected.
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Supplementary data are available at Botanical Journal of the 
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Figure 3. Ancestral area reconstruction inferred by the DEC model in BioGeoBears. Labels at the branch tips represent the regions where the 
species occur.

Table 2. Statistics from the biogeographical models (BioGeoBEARS) for the dated phylogeny of the subfamily Mapanioideae.

Model Likelihood Number of parameters Dispersal (d) Extinction (e) Founder effect (j) AICc

DEC −92.136 2 0.019 1 × 10−12 0 189.02
DEC+j −92.137 3 0.019 1 × 10−12 1 × 10−05 191.87
DIVA-like −96.065 2 0.024 0.031 0 196.88
DIVA-like+j −96.065 3 0.024 0.032 1 × 10−05 199.73

The best models are in bold type. AICc, corrected Akaike information criterion.
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