OPINION

The 2030 Declaration on Scientific Plant and Fungal Collecting

```
A. Martyn Ainsworth | Giuliana Furci | Ester Gaya |
Susana C. Gonçalves 6 David L. Hawksworth 1,7,8,9 DI Isabel Larridon 1,10 DI Isabel Larridon 1,10 DI Isabel Larridon DI Isabel DI 
Carmen Acedo 13  | Dilzara N. Aghayeva 14  | Alessandro A. Agorini 1 |
Laila S. Al Harthy 15 0 | Karen L. Bacon 16 0 | María G. Chávez-Hernández 1,17 0 |
Matheus Colli-Silva 1 Doette Crosier 18,19 Alexandra H. Davey 20 D
Kiran Dhanjal-Adams 1 Paul Y. Eguia 21 | Wolf L. Eiserhardt 1,22 |
Félix Forest 1 Rachael V. Gallagher 23 D Guillaume Gigot 24 D L
Zigmantas Gudžinskas 26  | Tilahun G. Hailemikael 27,28  |
Sandro P. Müller 16 | Raquel Negrão 1 | Ian Ondo 1,30 | Alan J. Paton 1 |
Marco O. O. Pellegrini Darin S. Pennevs Samuel Pironon Samuel Pironon Darin S. Pennevs Samuel Pironon Darin Samuel Piro
Daniel V. Rafidimanana <sup>32</sup> | Ramone Ramnath-Budhram <sup>1</sup> |
Marybel Soto Gomez 1 | Juliana L. Souza 38 | Laurynas Taura 26 |
Amanda Taylor 39,40 | Aida M. Vasco-Palacios 41,42 | Diego T. Vasques 43 | |
Patrick Weigelt 39,44,45 D | Jakub D. Wieczorkowski 20,46 D | China Williams 1 D
```

Correspondence

Alexandre Antonelli, Royal Botanic Gardens, Kew. London, UK.

Email: a.antonelli@kew.org

Jordan K. Teisher, Missouri Botanical Garden, St Louis, Missouri, USA.

Email: jteisher@mobot.org

Funding information

Fundação para a Ciência e Tecnologia, Grant/Award Number: UIDB/04004/2020; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Grant/Award Numbers: E-26/202.324/2021, E-26/203.857/2022

Societal Impact Statement

Biological samples and their associated information are an essential resource used by scientists, governments, policymakers, practitioners and communities to ensure that biodiversity can be appropriately protected and sustainably used. Yet, considering the enormous task of documenting the vast numbers of as-yet-unknown plant and fungal species, greater international coordination for biological collecting and recording is necessary, built on equitable collecting practices and standards. Here, we propose five commitments to accelerate and enhance scientific knowledge of plant and fungal diversity, while increasing collaboration, benefit sharing and efficiency.

For affiliations refer to page 18

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Author(s). Plants, People, Planet published by John Wiley & Sons Ltd on behalf of New Phytologist Foundation.

FAPERJ; RBG Kew Development; Sfumato Foundation; Kew Development; Schroder Foundation; Swiss National Science Foundation, Grant/Award Number: PCEFP3_187012; Swedish Research Council, Grant/Award Numbers: 2019-05191, VR: 2019-04739; Swedish Foundation for Strategic Environmental Research, Grant/Award Number: F 2022/1448

Summary

Almost all life depends on plants and fungi, making knowledge of their diversity and distribution-primarily derived from biological collections-fundamental to national and international conservation, restoration and sustainable use commitments. However, it is estimated that some 15% of all plant species and over 90% of all fungal species have not yet been scientifically described, hampering our ability to assess and demonstrate the impact of efforts to halt biodiversity loss. In addition, organisations and researchers around the world lack a concerted strategy for increasing complementarity and avoiding overlap in botanical and mycological research, particularly in relation to the collection of specimens. We here present the 2030 Declaration on Scientific Plant and Fungal Collecting, summarising a commitment towards such a necessary strategy. Its components were identified from discussions during and after a series of four workshops and plenary discussions at the 2023 State of the World's Plants and Fungi symposium convened by the Royal Botanic Gardens, Kew, and were then consolidated into the present form by the authors. The Declaration was subsequently opened up for endorsement by signatories. Collectively, we agree on a set of five commitments for cataloguing the world's flora and funga, designed to maximise efficiency, facilitate knowledge exchange and promote equitable collaborations: (1) use evidence-based collection strategies; (2) strengthen local capacity; (3) collaborate across taxa and disciplines; (4) collect for the future; and (5) share the benefits. This Declaration is a first step towards increased global and regional coordination of scientific collecting efforts.

KEYWORDS

biodiversity mapping, biological collections, conservation, equity, fungi, Kunming-Montreal Global Biodiversity Framework, plants, training

1 | INTRODUCTION

Knowledge of the diversity and distribution of plants and fungi is paramount to developing effective conservation and restoration aims, assessing the impact of climate and anthropogenic changes and delivering the targets of the Kunming-Montreal Global Biodiversity Framework (Conference of the Parties to the CBD, 2022). This is recognised in the proposed set of complementary actions related to plant conservation (CBD Secretariat, 2023), representing an update of the original Global Strategy for Plant Conservation 2011–2020 (Convention on Biological Diversity, 2012), to be adopted by the Parties to the Convention on Biological Diversity at COP 16. Although the targets of the Global Biodiversity Framework cover all biodiversity, including fungi, proposals to address fungal conservation concerns explicitly in overarching global strategies have not been successful so far. Our community intends to provide the impetus and evidence to allow this to be rectified in future initiatives.

To a large extent, the knowledge underpinning such policies and actions is derived from botanical and mycological reference collections—preserved plant and fungal specimens deposited in herbaria and fungaria, and living collections of plants (including seeds) and fungi (e.g., culture collections). It is from those reference

specimens-collected for various purposes and under different sampling methodologies, from taxonomic surveys to ecological studies-that new species can be scientifically described, with their associated data revealing occurrence patterns across space and time. Living and preserved physical specimens, particularly when digitised and DNA-sequenced, constitute an invaluable and irreplaceable resource for science, society and the environment (e.g., Bakker et al., 2020; Davis, 2022; Johnson et al., 2023; National Academies of Sciences, Engineering & Medicine, 2020). Their value is enhanced by citizen science observations of species reported on iNaturalist (www.inaturalist.org), Mushroom Observer (https:// mushroomobserver.org) or other communities (e.g., Haelewaters, Quandt, et al., 2024), which can then be integrated with specimen data on platforms such as the Global Biodiversity Information Facility (www.gbif.org). Of particular value are those observations with identifications vetted by specialists (classified as 'research-grade' in iNaturalist, although reliable identification of many fungi and some plants may require detailed molecular or micro-morphological investigation). The broad, interdisciplinary utility of modern primary collections is becoming amplified through the creation of 'extended specimens', digitally interlinked products including some or all of physical specimens, digital photographs, ecological data, tissue

25722611, 2025, 1, Downloaded from https:

library.wiley.com/doi/10.1002/ppp3.10569 by Readcube (Labtiva

Inc.), Wiley Online Library on [13/12/2024]. See the Terms

) on Wiley Online Library for rules of

samples, DNA sequences, phylogenies, species descriptions, functional traits, biotic interactions and conservation assessments (Lendemer et al., 2019; Schindel & Cook, 2018).

Despite their manifold uses and great importance, biological collections and the information they provide remain largely incomplete and spatially uneven (e.g., Meyer et al., 2016). It is estimated that some 15% of all plant species (Joppa et al., 2011) and over 90% of all fungal species (Niskanen et al., 2023) have not yet been scientifically described, hampering our ability to guide, assess and demonstrate the impact of efforts to halt biodiversity loss. Filling these gaps alone would require considerable time under a 'business as usual' scenario. This is particularly the case for fungi-describing all species would require some 750 to 1000 years at the current rate of around 2500 new species each year (Niskanen et al., 2023). Unfortunately, this is time we do not have when considering the rising threats to biodiversity. With three in four undescribed plant species threatened with extinction (Brown et al., 2023) and certain regions containing a high diversity of plant species with known human uses under no effective protection (Pironon et al., 2024), there is an overwhelming risk of our planet losing species (and their associated and dependent organisms; e.g., Hawksworth, 1998) before we even know about them or can explore their potential benefits to humanity (Antonelli et al., 2020). It is estimated that more than half of plant species remaining to be scientifically described are already present in biological collections (Bebber et al., 2010) and so filling the gaps requires both new collections and intensive study, digitisation and sharing of information in current accessions.

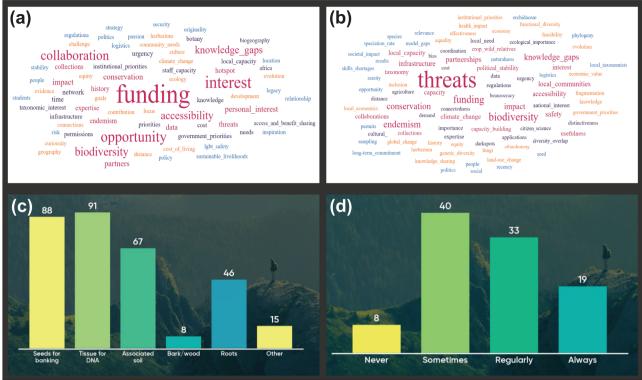
The challenge of scientifically describing all species on Earth (commonly referred to as the 'Linnean shortfall') is mirrored by another major challenge: that of ascertaining the full distribution of each species (the 'Wallacean shortfall'; Hortal et al., 2015). Addressing these shortfalls is critical for multiple reasons, such as inferring the climatic preferences and tolerance of species; developing effective conservation strategies in situ (such as inclusion in regional and national conservation targets, including the identification and protection of 30% of terrestrial, inland water, coastal and marine areas by 2030) and ex situ (such as through seed banking, culture collections of fungi and living plant collections); guiding the distribution of any benefits derived from bioprospecting activities back to the local and indigenous communities who have sovereignty over the species in their territories and are the effective stewards of their preservation; and providing essential scientific knowledge to support research in taxonomy, ecology, biogeography, evolution and biotechnology.

Understanding the diversity and distribution of species is also critical for mapping their potential threat status, an activity which suffers yet another major shortcoming—the recently proposed 'Scottian shortfall' (Haelewaters, Matthews, et al., 2024)—expressed as the difference between the number of described species and the number of species assessed for the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (iucnredlist.org). For instance, although 100% of known bird species have had their threat status assessed, this proportion is a mere 0.4% for fungi (Niskanen

et al., 2023), and so we are only just scratching the surface of understanding the threats they face and their risk of extinction (but see Mueller et al., 2022).

This Declaration aspires to sow the seeds (and indeed, spores!) of transformative change to the status quo by proposing a level of international coordination, collaboration and benefit sharing not previously attempted across the world's biodiversity institutions. We focus on a relatively narrow activity—the collection of plant and fungal specimens and samples—to increase the chances of making a distinctive contribution.

2 | DEVELOPMENT OF THE DECLARATION


The 2030 Declaration on Scientific Plant and Fungal Collecting has its foundation in the State of the World's Plants and Fungi 2023 report (Antonelli et al., 2023), with its associated underlying papers and international symposium. It has arisen from workshops and discussions involving some of the 228 in-person symposium delegates, including scientists, students, educators, policymakers and members of nongovernmental organisations, spread across 31 countries worldwide. Reduced fees for students and two bursaries for participants from low-income countries contributed to a diverse and international representation of backgrounds, career stages, professional affiliations and individual perspectives. Although every effort was made to design and implement an inclusive, equitable and open process, we acknowledge inherent geographic biases and power imbalances (see our position statement below). The identification of just over 30 global plant diversity darkspots and areas of high fungal diversity presented in the report and associated papers (Antonelli et al., 2023: Niskanen et al., 2023; Ondo et al., 2024) highlighted areas of the world where digitally available plant and fungal specimen data are most likely to be lacking. Those analyses, set alongside a stark assessment of the threats facing undescribed species (Brown et al., 2023), provided the impetus to galvanise and better coordinate global collecting efforts. The primary aim was to join the botanical and mycological communities in a collaborative endeavour to produce recommendations for accelerating collecting activities, taxonomic work and training to fill important knowledge gaps.

The process involved two focused workshops on the knowledge gaps and additional workshops on taxonomy training and financing, all held during the symposium from October 11 to 13, 2023. Participants contributed to the direction and substance of the discussions through direct questions and comments and through an online Mentimeter survey (www.mentimeter.com; Figure 1). The paper was then drafted by a core team of botanists and mycologists before being opened up to all co-authors for feedback. Finally, the Declaration was sent to a broader range of stakeholders to invite signatories to support the commitments (see Appendix 1, an online repository of signatories; Antonelli et al., 2024).

Discussions at the symposium focused on the geographical knowledge gaps for plant diversity and on the lack of comprehensive data for the world's funga (Kuhar et al., 2018). Although there are

25722611, 2025, 1, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10569 by Readcube (Labtiva Inc.), Wiley Online Library on [13/12/2024]. See the Terms and Conditions (https:

nditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Selected results from the survey of participants at the 2023 State of the World's Plants and Fungi symposium held at the Royal Botanic Gardens, Kew, in October 2023. Results are shown for each of the following questions: (a) What is the biggest factor determining where you work? (227 responses from 88 respondents); (b) What other factors should be considered when identifying priority areas for collecting and research? (231 responses from 103 respondents); (c) In addition to traditional youcher specimens, what else should be collected? (116 respondents); (d) Do you (or colleagues at your institution) collect additional material for DNA extraction? (100 respondents). The word clouds in panels (a)-(b) were compiled using freewordcloudgenerator.com, with font size proportional to the word's frequency in the responses (note that variations were standardised [e.g., collaboration and collaborators] to the most common or appropriate, and responses were grouped into words that captured their intended meaning, where unambiguous). Data are available in Dataset S1.

many data resources covering all regions and continents for plant diversity and distribution, leading to the darkspots map from Ondo et al. (2024) covering vascular plants, data on the very small percentage of known fungal diversity (<10%) are limited but include global syntheses for soil fungi (Mikryukov et al., 2023; Niskanen et al., 2023), airborne fungal spores from various environments (Ovaskainen et al., 2024) and marine fungi (Laiolo et al., 2024).

The scale of the task differs by orders of magnitude for the two groups. Joppa et al. (2011) estimated more than a decade ago that approximately 15% of all flowering plant species remained to be described. If that proportion also applied to all vascular plants (current number approximately 350,000; Govaerts et al., 2021, accessed in January 2024), this would mean there are approximately 52,500 undescribed species (dropping by >2500 each year as new species are described; Antonelli et al., 2023). So, although for plants, the number of unknown species is probably in the order of tens of thousands, for fungi, it is likely to be in the order of millions-recently estimated at around 2.5 million, representing over 90% of the global estimated fungal richness (Niskanen et al., 2023). The less complete knowledge of fungi is due to their higher diversity, inconspicuous nature and the

complexities of collecting and preserving voucher specimens, including fungi detected in various substrates but not recorded as sporebearing structures (and vice versa: species known only from visible sporing bodies but whose DNA is not detected in the substrate). These factors are compounded by a lack of specialists, funding for mycological research, training opportunities, local reference collections and facilities for culturing fungi and sequencing DNA and by the absence of a global taxonomic strategy.

Plants are still largely identified on morphological grounds, because of the abundance of vegetative, flowering and fruiting characteristics and also partly because most species have not yet been sequenced, particularly those with narrow distributions (Rudbeck et al., 2022). In contrast, DNA-based species identification is now standard practice for many groups of fungi and, indeed, is the only viable method to detect species present only as mycelia in the soil and other substrates. Concerted efforts to sequence the genomes of type specimens in the world's fungaria would therefore be a critical step for accelerating species descriptions, increasing precision in the taxonomic assignment of environmental DNA (eDNA) samples and providing a framework to advance fungal conservation.

3 | PRIORITY REGIONS FOR FUNGAL AND PLANT COLLECTION

Given the close relationships between plants and fungi, a collecting strategy based on knowledge gaps for plants is likely to also yield novel data for fungi. Although no joint analysis combining plants and fungi has been conducted to date to identify the regions most likely to yield new species to science and new distribution records for known species, a visual comparison between the darkspot analysis of Ondo et al. (2024) alongside a species richness map for soil fungi from Mikryukov et al. (2023) suggests that several regions will contribute novel insights for both taxonomic groups (Figure 2).

Large gaps in knowledge exist for both groups in tropical areas, whereas for fungi, some temperate areas are also unusually diverse and in need of further exploration. For both groups, finer-scale analysis could reveal additional priority areas and regional subtleties. For example, fungi are more diverse than plants in extreme environments. Local knowledge, collaboration and consultation are essential for identifying collecting priorities and planning any collecting activities.

4 | FIVE COMMITMENTS

Against the urgency of the biodiversity crisis and the manifold benefits of increasing international collaboration on plant and fungal

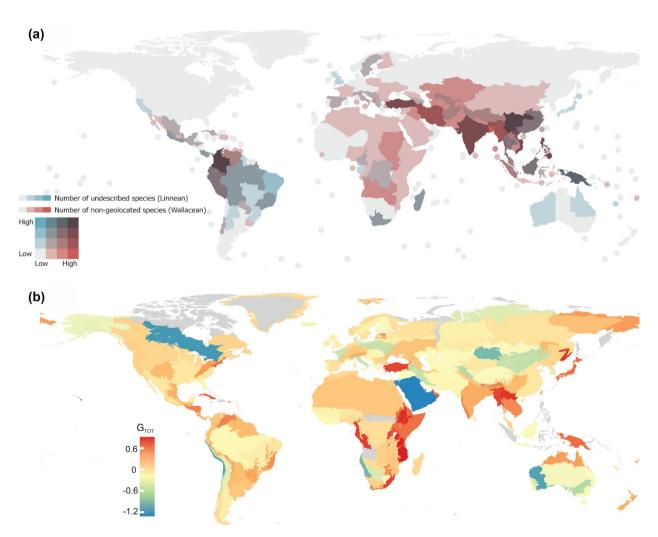


FIGURE 2 Where should we concentrate future collecting efforts for plants and fungi? Despite important limitations on data availability and completeness, current knowledge on the diversity and distribution of species provides valuable clues to which regions are most likely to yield novel scientific insights. (a) Botanical countries coloured according to their expected contribution of new plant species to science and new records of previously known species (darkspot analysis from Ondo et al., 2024; map reproduced under CC-BY-NCND 4.0 International license with permission of the author). (b) Total fungal richness (residuals of gamma diversity at the ecoregion scale) based on environmental DNA sequence data of soil fungi (from Mikryukov et al., 2023; map reproduced under CC BY-NC 4.0 license with permission of the author). Zero indicates the observed gamma diversity matches what is expected for a fixed sampling effort. Values below zero suggest lower than expected diversity, positive values indicate higher than expected diversity. Note that no similar darkspot analysis has been conducted to date and that other functional groups—such as lichenised and wood-inhabiting fungi—might show different patterns. See original publications for details on methodology and additional analyses and maps.

25722611, 2025, 1, Downloaded from https: library.wiley.com/doi/10.1002/ppp3.10569 by Readcube (Labtiva Inc.), Wiley Online Library on [13/12/2024]. See the Terms on Wiley Online Library for rules of use; OA

collecting, we identified a set of five principles that we considered appropriate to meeting our ambitions of change and synergy. As well as recommending them for consideration by the global scientific community, we—the authors of this publication and co-signatories listed in Appendix 1 (Antonelli et al., 2024)—commit, on a voluntary and non-binding basis, to those principles. In the years leading to 2030, we collectively agree to:

4.1 Use evidence-based collection strategies

Historical accounts, our combined personal experiences and several studies indicate that botanical and mycological collecting and research have concentrated on particular regions of the world, at least partly because of non-biological aspects such as tradition, political regimes, economics, accessibility, and personal and institutional preferences or constraints, policies and partnerships (e.g., see Meyer et al., 2016; Zizka et al., 2021). Clearly, all countries and regions would benefit from more collections and further taxonomic research, to help meet the conservation goals set by the Kunming-Montreal Global Biodiversity Framework (Conference of the Parties to the CBD, 2022). However, optimising a rapid increase in overall global knowledge will require concentrating efforts on regions that would provide the best outcomes for filling plant and fungal data gaps. This includes those that are highly biologically diverse and insufficiently collected and those with highest potential for hosting undescribed or highly threatened taxa. Candidate regions are, for example, plant diversity darkspots (Figure 2a), which can be based purely on biological criteria or derived from the interplay between biological and socioeconomic-political variables (see Ondo et al., 2024).

For fungi, notable efforts and data initiatives have been undertaken, such as GlobalFungi (https://globalfungi.com), the Global Soil Mycobiome Consortium (https://gsmc-fungi.github.io) and the Society for the Protection of Underground Networks (www.spun.earth), particularly focused on soil fungi but with Global Fungi also covering litter, dead and living plant material, water, air, dust and more. We still lack similar data-driven prioritisation analyses at a global scale for all groups, although diversity maps now exist for particular functional groups (such as arbuscular mycorrhizal and ectomycorrhizal fungi; Mikryukov et al., 2023) and efforts are underway to increase sampling in areas of expected high mycorrhizal fungal diversity (e.g., https:// www.spun.earth/maps). Collecting focus could also be on areas of high predicted dissimilarity, endemicity, vulnerability or ecosystem services (Figure 2a, Mikryukov et al., 2023; Figure 2b, Niskanen et al., 2023; for soil fungi). There are also in-depth initiatives at the national scale, such as a UK-Government-funded, long-term soil monitoring project that includes mycorrhizal fungi, which is being carried out in England as part of the terrestrial National Capital and Ecosystem Assessment programme (www.kew.org/science/tncea-mycorrhizas).

We recognise that real-world decisions on where to conduct research are complex and must consider imbalances and inequalities in scientific resourcing, local needs, national and international laws, safety concerns, access to electricity, internet and research facilities, and challenges for scientists in low-income countries to conduct research in their own countries and abroad, among others. The prioritisation of areas for the collection of plants and fungi should also be a dynamic and iterative process, to be constantly revised in light of novel data being made available through digitisation efforts and analytical tools, and it should avoid deepening systematic biases (Chapman et al., 2024). Moving forward, we will strive, where possible, to be primarily guided by evidence—data, analyses and knowledge—through iterative, inclusive and reproducible processes.

In practice, this could mean that we—individually and organisationally—prioritise regions or taxa that we have not worked on before (with clarity on mutual expectations and timeframes for commitment) and potentially reduce biological collecting in regions or on taxa for which considerable data have already been produced, always fully engaging with local partners throughout the process and responding to their decisions, requests and sovereignty.

To enable those actions, further coordination of efforts will be needed following the work initiated in the 2023 State of the World's Plants and Fungi symposium and this Declaration. Additional modelling and ground-truthing work will be needed to increase spatial resolution within countries and regions already identified as top priorities for botanical and mycological sampling, including how collecting may best support national conservation priorities.

4.2 | Strengthen local capacity

The uneven distribution of financial resources across the world has led to pronounced variation in the ability of individual nations to document their flora and funga. This is particularly problematic in high-biodiversity, low-income regions, where the ratio of taxonomists to species is low, financial resources to develop basic research are limited, access to printed and online literature can be difficult, and biological collections are smaller, less well-resourced and with a lesser degree of molecular characterisation than those hosted by large international organisations. However, local and national reference collections such as these can be even more important in the local context (see, e.g., Delves et al., 2024, Diazgranados et al., 2022; Ortiz-Moreno et al., 2022). Additionally, with the majority of undescribed plant species likely to be threatened with extinction (Brown et al., 2023), investing resources in the areas where these species are likely to be found will be essential to effective conservation. Greater local capacity can also support active monitoring and in situ study of very rare species for which collecting would potentially cause irreparable harm to the population. Whenever possible, we will strive to support professional development and research infrastructure in the regions in which we work and, for international fieldwork, commit to depositing at least one set of duplicates for all specimens in the country of origin where there are established fungaria or herbaria.

In practice, this could mean developing and implementing equitable training opportunities adapted to local conditions and needs; promoting internships for students and staff across institutions

for knowledge exchange; building or improving safe and functional biological collections; supporting digitisation and data integration efforts; supporting the development of field stations that are initiated, owned and managed by local researchers, or research offices hosted by local institutions; and providing support for the purchase of laboratory equipment such as microscopes, culturing facilities and DNA extraction and analysis equipment and software.

To enable those activities, international and national partners should consider producing joint bids for funding from public, corporate and private sources; seeking the maintenance and longevity of such activities for the time that is necessary; and sharing good practices and experiences.

4.3 | Collaborate across taxa and disciplines

There are several reasons why individual taxonomists, and sometimes organisations, specialise in a particular set of taxa and scientific disciplines. Although specialisation is often a prerequisite for scientific depth, one downside is that when scientists carry out biological surveys, they usually only cover a fraction of the total biodiversity of a site and do not always address the wide range of taxonomic, ecological, conservation and evolutionary questions that are possible. This sampling pattern, combined with the general scarcity of taxonomists, means that very few regions have been researched thoroughly for multiple taxa, but this is particularly the case in the tropics. In addition, many ecological studies, such as those involving plot-based surveys, do not usually involve the collection of voucher specimens. To counteract these challenges and gain a better and more complete understanding of species in priority regions and ecosystems. their evolution, biological interactions, conservation status and environmental requirements, we recommend a comprehensive natural history collection approach (Wu et al., 2024) and we will strive to increase collaboration across taxonomic groups, methods and disciplines.

In practice, this could mean organising collecting campaigns that include international and local specialists in as many taxa as possible (ideally covering fungi, plants and animals, and their incidental and associated microbiomes); integrating 'systematic' (i.e., targeting specific taxa), 'ecological' (i.e., following specific collection protocols such as in permanent plots; ter Steege et al., 2011) and 'functional' (for fungi, including all potential life-styles) sampling; developing training opportunities for the collection and processing of samples of a diverse range of taxa; and further promoting educational and scientific interchange, such as cross-taxonomic seminars and projects that help strengthen connections among researchers.

To enable these actions, funding bodies, research organisations and individual scientists should evaluate how existing resources could be (re-)deployed and new funds pursued. Alongside this, workstyle ('cultural') changes are needed. These may not always require more funding, such as more frequent communication between experts in different taxa, driven by the willingness and curiosity for botanists and mycologists to work more closely together.

4.4 | Collect for the future

Biological collections have been accumulating for over five centuries, and their use has often extended far beyond the original purpose envisaged by the collector. For instance, no botanist or mycologist prior to the late 20th century could have imagined that their samples-which may often represent populations and even species no longer surviving in nature—would be widely used for DNA sequencing to illuminate the relationships, evolution and adaptations of species. Novel uses of such collections are constantly being developed, from the mapping of microbiomes to the quantification of individual molecules and chemical compounds, and computer tomography (CT) scans of morphological structures such as pollen, seeds, spores and hyphae. A wide range of studies in ecology, conservation and environmental sciences are increasingly aided by artificial intelligence tools to help researchers capture and interpret information from specimens (Burbano & Gutaker, 2023; Davis, 2022). Without doubt, the uses of specimens in the future will likewise expand vastly beyond what we can foresee today. Similarly, living collections-such as seeds, living plants and fungal cultures-will continue to constitute critical resources for pharmacological studies and biotechnological innovation and other uses. We will strive to collect and store samples in ways that maximise their future use and safeguard existing and new collections.

In practice, this could mean exploring current and future collection techniques and protocols that capture a wider range of structures and organisms associated with a particular specimen. Potential activities include leveraging and expanding the extended specimens, including ancillary collections (e.g., carpological, wood, palynological and spirit collections); collecting tissues set aside for the extraction of DNA and other molecules, either in silica gel or liquid nitrogen; collecting seeds, spores and mycelia for ex situ biobanking (such as seed banks, many of which are partners of the Millennium Seed Bank Partnership; and fungal Genetic Resource Centres-culture collections-such as the Westerdijk Fungal Biodiversity Institute in Utrecht); collecting additional tissues, such as roots, mycorrhizal root tips and bark for plants; putting plant tissues in culture, when possible in situ, to maximise the capture of fungal endophyte and epiphyte diversity; and initiating novel types of collections, such as soil and freshwater samples containing environmental DNA. Such ancillary collections can also be critical when studying populations that are so severely threatened that collection of traditional specimens poses too much risk.

A forward-looking approach is essential: seeking flexibility for the use of collections for future scientific endeavours, including the cross-national transfer of samples when necessary—from the permit application stage to conform to national and international regulations; collecting ample metadata, such as trait observations to fill critical knowledge gaps (Gallagher et al., 2020; Maitner et al., 2023) and characteristics of the habitat in which a specimen was collected, through annotations by experts or citizen scientists and other techniques such as photographs and 3D LiDAR scans; and ensuring that collections are 'born digital' and their information is fully and globally integrated and accessible. Both new and existing collections should be treated as

-Plants People Planet PPF

critical assets and given the best possible conditions for permanent storage without compromising their accessibility (Davies et al., 2023).

To enable these actions, international collaboration will be key, including among the co-signatories of this Declaration. Such interactions will be important in helping to overcome regional constraints for collections storage space and capacity and to jointly manage the allocation of available resources to researchers and institutions with careful consideration of the trade-offs (such as whether to make many collections with few associated data and samples, or fewer collections with more diverse sampling and richer metadata).

4.5 Share the benefits

It is crucial for biological research to properly and equitably benefit the custodians of biodiversity-from Indigenous Peoples and local communities to society at large. In 1992, the Convention on Biological Diversity (ratified by 196 nations) recognised nations' sovereignty over their biodiversity. Although many countries now have established routines for Access and Benefit Sharing of physical samples, tensions still exist. There are many reasons for this: benefits arising from the use of biodiversity are not always shared with all relevant stakeholders in countries of origin; there are ongoing discussions to find a global solution to the many complexities in regulating digital sequence information derived from physical specimens and ensure the benefits of its use are shared equitably; and there is potential for publicly available biodiversity data to be used commercially by companies unwilling to support data generation through taxonomic work; among other reasons. To overcome some of these difficulties and ensure that policies and legislation continue to protect biodiversity and its custodians without hindering research activities, there has been a push to improve the functionality and efficiency of regulatory mechanisms (Williams et al., 2020). We will strive to share the benefits of collecting efforts widely, particularly with the source communities and national data centres.

In practice, this could mean co-creating and jointly running collaborative collection campaigns involving multiple stakeholders through transparent processes that help build trust (e.g., Ramírez-Castañeda et al., 2022); identifying opportunities for deriving financial and nonmonetary benefits through such processes; making sure that prior informed consent is always provided; following other key principles (such as CARE Principles for Indigenous Data Governance; https:// www.gida-global.org/care) when scientists wish to access local and Indigenous knowledge (e.g., Villani et al., 2023), with clarity on how such knowledge will be used and how benefits will be shared; encouraging people transitions and knowledge exchange between academia and the public and private sectors; ensuring that local stakeholders are adequately included in derived publications and other forms of deliverables; and choosing to publish open access whenever possible.

To enable those actions, more researchers and organisations could share their success stories of benefit sharing with the public and their peers; governments could consider ways to drive environmentally sustainable policies that seize opportunities for sustainable development from their biodiversity resources (such as Colombia's

National Bioeconomy Strategy); and further partnerships could be made between academic, public and private stakeholders to define and seek solutions to pressing challenges where increased knowledge on the diversity, distribution and uses of plants and fungi could make an important contribution.

CONCLUSIONS

In this Declaration, we have provided a set of simple and concrete principles towards increased, more efficient and more equitable coordination of scientific collecting efforts at regional and global scalesour five commitments. Given the background and rationale for this paper, we hope these principles will be received positively by the community of collections-based organisations and professionals around the world and will help shape their policies and plans. A public call for signatories of this Declaration has at the time of acceptance of this publication gathered 851 signatories (59 co-authors, 679 other individuals and 113 organisations) across 85 countries. These are listed in Appendix 1 (Antonelli et al., 2024), along with a summary of the taxonomic interests, fields of expertise and sphere of work of the individual co-signatories. We view this as the beginning, rather than the completion, of a discussion bringing collectors and collections managers together around shared strategic objectives. We hope that further conversations can happen at relevant fora, such as upcoming botanical and mycological congresses, meetings and workshops held at various levels (international, regional, national and local). As part of this open and interactive process, we will continue to accept cosignatories after the publication of this article, updating Appendix I to incorporate any new signatories.

AUTHOR CONTRIBUTIONS

All authors were involved in discussions and workshops on the subject of this Declaration at the State of the World's Plants and Fungi symposium in October 2023. Alexandre Antonelli, Jordan K. Teisher and Rhian J. Smith wrote the first draft. A. Martyn Ainsworth, Giuliana Furci, Ester Gaya, Susana C. Gonçalves, David L. Hawksworth, Isabel Larridon, Emily B. Sessa, Ana Rita G. Simões and Laura M. Suz provided extensive feedback, and all authors then contributed additional feedback before the manuscript was finalised by Alexandre Antonelli, Jordan K. Teisher and Rhian J. Smith and re-circulated for final approval.

AFFILIATIONS

¹Royal Botanic Gardens, Kew, London, UK

²Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

³Department of Biology, University of Oxford, Oxford, UK

⁴Missouri Botanical Garden, St Louis, Missouri, USA

⁵Fungi Foundation, Santiago, Chile

⁶Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, **Portugal**

⁷Department of Life Sciences, Natural History Museum, London, UK

- ⁸Jilin Agricultural University, Chanchun, China
- ⁹Department of Geography and Environment, University of Southampton, Southampton, UK
- ¹⁰Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, Ghent, Belgium
- ¹¹New York Botanical Garden, New York, New York, USA
- ¹²East African Herbarium, Botany Department, National Museums of Kenya, Nairobi, Kenya
- ¹³Laboratory of Taxonomy and Biodiversity Conservation, University of León, León, Spain
- ¹⁴Institute of Botany, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
- ¹⁵Oman Botanic Garden, Muscat, Sultanate of Oman
- ¹⁶School of Natural Sciences, University of Galway, Galway, Ireland
- ¹⁷School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- ¹⁸Natural Resources Institute Finland, Helsinki, Finland
- ¹⁹University of Helsinki, Helsinki, Finland
- ²⁰Royal Botanic Garden Edinburgh, Edinburgh, UK
- ²¹SILAB, Saint-Viance, France
- ²²Department of Biology, Aarhus University, Aarhus, Denmark
- ²³Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- ²⁴PatriNat (OFB-MNHN), Paris, France
- ²⁵ Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
- ²⁶Nature Research Centre, Laboratory of Flora and Geobotany, Vilnius. Lithuania
- ²⁷University of Gondar, Gondar, Ethiopia
- ²⁸Institute of Biotechnology, Gondar, Ethiopia
- ²⁹School of Management and Plant Seed Production, National University of Agriculture, Ketou, Benin
- ³⁰UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
- $^{\rm 31}$ University of North Carolina Wilmington, Wilmington, North Carolina, USA
- ³²Department of Plant Biology and Ecology, University of Antananarivo, Antananarivo, Madagascar
- ³³Kew Madagascar Conservation Centre, Royal Botanic Gardens, Kew, Antananarivo, Madagascar
- ³⁴Denver Botanic Gardens, Denver, Colorado, USA
- ³⁵Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- ³⁶Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- ³⁷Department of Biology, University of Fribourg, Fribourg, Switzerland
- ³⁸Brazilian Agricultural Research Corporation (Embrapa), Aracaju, Sergipe, Brazil
- ³⁹Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- ⁴⁰Wageningen University and Research (WUR), Wageningen, The Netherlands

- ⁴¹Grupo BioMicro, School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
- ⁴²Asociación Colombiana de Micología, Bogotá, Colombia
- ⁴³Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- ⁴⁴Campus Institute Data Science, Göttingen, Germany
- ⁴⁵Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- 46 School of GeoSciences, University of Edinburgh, Edinburgh, UK

ACKNOWLEDGEMENTS

We thank all participants of the 2023 State of the World's Plants and Fungi symposium held at Kew in October 2023 for their participation in the discussions and workshops that shaped this Declaration; Peter Raven for fostering the initial discussions that led to the choice of theme for the symposium, report, papers and Declaration; Mimi Tanimoto for coordinating the symposium, along with her team of organisers: and Vladimir Mikryukov for supplying the source map for Figure 2 and assisting with the caption. We thank Natasha de Vere and an anonymous reviewer for their constructive feedback on the manuscript. The Sfumato Foundation is kindly thanked for funding the State of the World's Plants and Fungi project. Alexandre Antonelli acknowledges further financial support from the Swedish Research Council (2019-05191) and Kew Development. Ana Rita Giraldes Simões acknowledges financial support from the Schroder Foundation for the development of taxonomy training initiatives in highly biodiverse countries, from which learnings in this Declaration have been derived. Daniele Silvestro acknowledges funding from the Swiss National Science Foundation (PCEFP3 187012), the Swedish Research Council (VR: 2019-04739) and the Swedish Foundation for Strategic Environmental Research MISTRA within the framework of the research programme BIOPATH (F 2022/1448). Janaína Gomes-da-Silva acknowledges funding from the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/202.324/2021; E-26/203.857/2022 FAPERJ). Susana C. Gonçalves was supported by FCT - Fundação para a Ciência e Tecnologia, I.P., in the framework of the Project UIDB/04004/2020 and DOI identifier 10.54499/ UIDB/04004/2020.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest. The views expressed in this article do not necessarily represent official positions from the authors' organisations or their funders.

DATA AVAILABILITY STATEMENT

The data presented here are fully reported for Fig. 2 and available from the original publications for Fig. 3.

ETHICS STATEMENT

Participants willingly engaged in the anonymous live Mentimeter survey at the symposium, and no personal information was collected. By signing the Declaration, signatories consented to the publication of

25722611, 2025, 1, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10569 by Readcube (Labtiva Inc.), Wiley Online Library on [13/122024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

their name and country of residence in the associated appendix. The data collection, use and publication are compliant with The Data Protection Act 2018, which is the UK's implementation of the General Data Protection Regulation (GDPR).

POSITION STATEMENT

The authors of this paper include individuals based in institutions across 22 countries around the world, with different career stages, scientific backgrounds, sexes, ethnic backgrounds and other diversity parameters. However, we acknowledge an over-representation from wealthy nations, in particular the United Kingdom and other high-income European countries, which stands in striking contrast to the regions where future research, collecting, training and conservation are most needed: low-income, biodiverse countries in tropical regions. Although there was an inclusive process for inviting co-authors and co-signatories, we make no claims to represent all key voices and perspectives.

Alexandre Antonelli https://orcid.org/0000-0003-1842-9297

Jordan K. Teisher 🕩 https://orcid.org/0000-0002-2707-2341

Rhian J. Smith https://orcid.org/0000-0003-2836-0246

ORCID

Giuliana Furci https://orcid.org/0000-0001-7937-650X Ester Gaya https://orcid.org/0000-0001-6404-4297 Susana C. Gonçalves 🕩 https://orcid.org/0000-0001-6308-2662 David L. Hawksworth https://orcid.org/0000-0002-9909-0776 Isabel Larridon D https://orcid.org/0000-0003-0285-722X Emily B. Sessa https://orcid.org/0000-0002-6496-5536 Ana Rita G. Simões 🕩 https://orcid.org/0000-0001-7267-8353 Laura M. Suz https://orcid.org/0000-0003-4742-572X Carmen Acedo https://orcid.org/0000-0001-6692-6509 Dilzara N. Aghayeva https://orcid.org/0000-0001-7082-4070 Laila S. Al Harthy https://orcid.org/0000-0003-3233-1827 Karen L. Bacon https://orcid.org/0000-0002-8944-5107 María G. Chávez-Hernández https://orcid.org/0000-0003-1071-9994 Matheus Colli-Silva https://orcid.org/0000-0001-7130-3920 Joette Crosier 🕩 https://orcid.org/0009-0001-1111-9838 Alexandra H. Davey https://orcid.org/0000-0002-0451-4098 Kiran Dhanjal-Adams https://orcid.org/0000-0002-0496-8428 Wolf L. Eiserhardt https://orcid.org/0000-0002-8136-5233 Félix Forest https://orcid.org/0000-0002-2004-433X Rachael V. Gallagher https://orcid.org/0000-0002-4680-8115 Guillaume Gigot https://orcid.org/0000-0002-5321-6935 Janaína Gomes-da-Silva 🕩 https://orcid.org/0000-0003-0817-186X Rafaël H. A. Govaerts https://orcid.org/0000-0003-2991-5282 Olwen M. Grace https://orcid.org/0000-0003-1431-2761 Zigmantas Gudžinskas 🕩 https://orcid.org/0000-0001-6230-5924 Tilahun G. Hailemikael https://orcid.org/0009-0008-1013-0913 Sayyara J. Ibadullayeva 🕩 https://orcid.org/0000-0003-0397-1593 Rodrigue Idohou https://orcid.org/0000-0003-2641-6832 José I. Márquez-Corro 🕩 https://orcid.org/0000-0003-4277-2933 Sandro P. Müller (D) https://orcid.org/0000-0002-8896-8635

Raquel Negrão https://orcid.org/0000-0002-4758-8038 Ian Ondo https://orcid.org/0000-0001-7816-5882 Alan J. Paton https://orcid.org/0000-0002-6052-6675 Marco O. O. Pellegrini https://orcid.org/0000-0002-8783-1362 Darin S. Penneys https://orcid.org/0000-0003-0727-2829 Samuel Pironon https://orcid.org/0000-0002-8937-7626 Daniel V. Rafidimanana https://orcid.org/0000-0003-1186-6742 Fitiavana Rasaminirina https://orcid.org/0000-0003-0162-7975 Julie A. Reiske https://orcid.org/0009-0007-2804-5912 Rowan F. Sage https://orcid.org/0000-0001-6183-9246 Alexandre Salino https://orcid.org/0000-0003-0104-7524 Daniele Silvestro https://orcid.org/0000-0003-0100-0961 Monique S. J. Simmonds https://orcid.org/0000-0002-5058-7992 Marybel Soto Gomez https://orcid.org/0000-0003-1812-7416 Juliana L. Souza https://orcid.org/0000-0002-7514-0361 Laurynas Taura https://orcid.org/0000-0002-5676-3889 Amanda Taylor https://orcid.org/0000-0002-0420-2203 Aida M. Vasco-Palacios https://orcid.org/0000-0003-0539-9711 Diego T. Vasques https://orcid.org/0000-0001-7978-2516 Patrick Weigelt https://orcid.org/0000-0002-2485-3708 Jakub D. Wieczorkowski https://orcid.org/0000-0003-2128-5925 China Williams https://orcid.org/0000-0003-1244-4680

REFERENCES

Antonelli, A., Fry, C., Smith, R. J., Eden, J., Govaerts, R. H. A., Kersey, P., Nic Lughadha, E., Onstein, R. E., Simmonds, M. S. J., Zizka, A., Ackerman, J. D., Adams, V. M., Ainsworth, A. M., Albouy, C., Allen, A. P., Allen, S. P., Allio, R., Auld, T. D., Bachman, S. P., ... Zuntini, A. R. (2023). State of the world's plants and fungi 2023. Royal Botanic Gardens, Kew. Available from:. https://kew.org/sotwpf

Antonelli, A., Hiscock, S., Lennon, S., Simmonds, M., Smith, R. J., & Young, B. (2020). Protecting and sustainably using the world's plants and fungi. *Plants, People, Planet*, 2(5), 368–370. https://doi.org/10.1002/ppp3.10150

Antonelli, A., Teisher, J. K., Smith, R. J., Ainsworth, A. M., Furci, G., Gaya, E., Gonçalves, S. C., Hawksworth, D. L., Larridon, I., Sessa, E. B., Simões, A.-R. G., Suz, L. M., Acedo, C., Aghayeva, D. N., Agorini, A. A., Al Harthy, L. S., Bacon, K. L., Chávez-Hernández, M. G., Colli-Silva, M., ... Williams, C. (2024). Appendix 1: Signatories of the 2030 Declaration on Plant and Fungal Collecting. Zenodo. https://zenodo.org/doi/10.5281/zenodo.12579699

Bakker, F., Antonelli, A., Clarke, J., Cook, J., Edwards, S., Ericson, P., Faurby, S., Ferrand, N., Gelang, M., Gillespie, R., Irestedt, M., Lundin, K., Larsson, E., Matos-Maraví, P., Müller, J., von Proschwitz, T., Roderick, G., Schliep, A., Wahlberg, N., ... Källersjö, M. (2020). The global museum: Natural history collections and the future of evolutionary science and public education. *PeerJ*, 8, e8225. https://doi.org/10.7717/peerj.8225

Bebber, D. P., Carine, M. A., Wood, J. R. I., Wortley, A. H., Harris, D. J., Prance, G. T., Davidse, G., Paige, J., Pennington, T. D., Robson, N. K. B., & Scotland, R. W. (2010). Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences, 107(51), 22169–22171. https://doi.org/10.1073/pnas. 1011841108

Brown, M. J. M., Bachman, S. P., & Nic Lughadha, E. (2023). Three in four undescribed plant species are threatened with extinction. *New Phytologist*, 240(4), 1340–1344. https://doi.org/10.1111/nph.19214

25722611, 2025, 1, Downloaded from https://nph.or

ılinelibrary.wiley.com/doi/10.1002/ppp3.10569 by Readcube (Labtiva

Inc.), Wiley Online Library on [13/12/2024]. See the Terms

on Wiley Online Library for rules of

use; OA articles

are

- Burbano, H. A., & Gutaker, R. M. (2023). Ancient DNA genomics and the renaissance of herbaria. Science, 382(6666), 59–63. https://doi.org/ 10.1126/science.adi1180
- CBD Secretariat. (2023). Recommendation 25/4: Plant conservation. Available from: https://www.cbd.int/doc/recommendations/sbstta-25/sbstta-25-rec-04-en.docx. Accessed 11 March 2024.
- Chapman, M., Goldstein, B. R., Schell, C. J., Brashares, J. S., Carter, N. H., Ellis-Soto, D., Faxon, H. O., Goldstein, J. E., Halpern, B. S., Longdon, J., Norman, K. E. A., O'Rourke, D., Scoville, C., Xu, L., & Boettiger, C. (2024). Biodiversity monitoring for a just planetary future. *Science*, 383(6678), 34–36. https://doi.org/10.1126/science.adh8874
- Conference of the Parties to the CBD. (2022). Kunming-Montreal Global Biodiversity Framework. Available from: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
- Convention on Biological Diversity. (2012). Global strategy for plant conservation: 2011–2020. Botanic Gardens Conservation International.
- Davies, N. M. J., Drinkell, C., & Utteridge, T. M. A. (Eds.). (2023). The herbarium handbook. Richmond.
- Davis, C. C. (2022). The herbarium of the future. *Trends in Ecology & Evolution*, 38(5), 412–423. https://doi.org/10.1016/j.tree.2022.11.015
- Delves, J., Albán-Castillo, J., Cano, A., Fernández Aviles, C., Gagnon, E., Gonzáles, P., Knapp, S., León, B., Marcelo-Peña, J. L., Reynel, C., Rojas Gonzáles, R.d P., Rodríguez Rodríguez, E. F., Särkinen, T., Vásquez Martínez, R., & Moonlight, P. W. (2024). Small and in-country herbaria are vital for accurate plant threat assessments: A case study from Peru. Plants, People, Planet, 6(1), 174–185. https://doi.org/10.1002/ppp3.10425
- Diazgranados, M., Hammond, D., Rojas, T., White, K., Mira, M., Castellanos-Castro, C., Gutiérrez, C., & Ulian, T. (2022). The Useful Plants and Fungi of Colombia (UPFC) project: Delivering botanical knowledge to support conservation and sustainable development. In R. Negrão, A. Monro, C. Castellanos-Castro, & M. Diazgranados (Eds.), Catalogue of useful plants of Colombia (pp. 19–32). Royal Botanic Gardens, Kew, in association with the Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Available from:. https://kew.iro.bl.uk/concern/books/dbea3dfc-8738-44a1-8ea5-fb9400a3d241
- Gallagher, R. V., Falster, D. S., Maitner, B. S., Salguero-Gómez, R., Vandvik, V., Pearse, W. D., Schneider, F. D., Kattge, J., Poelen, J. H., Madin, J. S., Ankenbrand, M. J., Penone, C., Feng, X., Adams, V. M., Alroy, J., Andrew, S. C., Balk, M. A., Bland, L. M., Boyle, B. L., ... Enquist, B. J. (2020). Open Science principles for accelerating trait-based science across the tree of life. *Nature Ecology & Evolution*, 4(3), 294–303. https://doi.org/10.1038/s41559-020-1109-6
- Govaerts, R., Nic Lughadha, E., Black, N., Turner, R., & Paton, A. (2021). The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. *Scientific Data*, 8(1), 215. https://doi.org/10.1038/s41597-021-00997-6
- Haelewaters, D., Matthews, T. J., Wayman, J. P., Cazabonne, J., Heyman, F., Quandt, C. A., & Martin, T. E. (2024). Biological knowledge shortfalls impede conservation efforts in poorly studied taxa—A case study of Laboulbeniomycetes. *Journal of Biogeography*, 51(1), 29–39. https://doi.org/10.1111/jbi.14725
- Haelewaters, D., Quandt, C. A., Bartrop, L., Cazabonne, J., Crockatt, M. E.,
 Cunha, S. P., De Lange, R., Dominici, L., Douglas, B., Drechsler-Santos, E. R., Heilmann-Clausen, J., Irga, P. J., Jakob, S., Lofgren, L.,
 Martin, T. E., Muchane, M. N., Stallman, J. K., Verbeken, A.,
 Walker, A. K., & Gonçalves, S. C. (2024). The power of citizen science
 to advance fungal conservation. *Conservation Letters*, 17(3), e13013.
 https://doi.org/10.1111/conl.13013
- Hawksworth, D. L. (1998). The consequences of plant extinctions for their dependent biotas: An overlooked aspect of conservation science. In C. -I. Peng & P. P. Lowry, II (Eds.), Rare, threatened, and endangered floras of Asia and Pacific rim, monograph series no. 16 (pp. 1–15). Institute of Botany, Academia Sinica.

- Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. *Annual Review of Ecology, Evolution, and Systematics*, 46(1), 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
- Johnson, K. R., Owens, I. F. P., & the Global Collection Group. (2023). A global approach for natural history museum collections. *Science*, 379(6638), 1192–1194. https://doi.org/10.1126/science.adf6434
- Joppa, L. N., Roberts, D. L., & Pimm, S. L. (2011). How many species of flowering plants are there? *Proceedings of the Royal Society B: Biological Sciences*, 278(1705), 554–559. https://doi.org/10.1098/rspb.2010. 1004
- Kuhar, F., Furci, G., Drechsler-Santos, E. R., & Pfister, D. H. (2018). Delimitation of Funga as a valid term for the diversity of fungal communities: The Fauna, Flora & Funga proposal (FF&F). IMA Fungus, 9(2), A71–A74. https://doi.org/10.1007/BF03449441
- Laiolo, E., Alam, I., Uludag, M., Jamil, T., Agusti, S., Gojobori, T., Acinas, S. G., Gasol, J. M., & Duarte, C. M. (2024). Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome. Frontiers in Science, 1. https://doi.org/10.3389/ fsci.2023.1038696
- Lendemer, J., Thiers, B., Monfils, A. K., Zaspel, J., Ellwood, E. R., Bentley, A., LeVan, K., Bates, J., Jennings, D., Contreras, D., Lagomarsino, L., Mabee, P., Ford, L. S., Guralnick, R., Gropp, R. E., Revelez, M., Cobb, N., Seltmann, K., & Aime, M. C. (2019). The extended specimen network: A strategy to enhance US biodiversity collections, promote research and education. *Bioscience*, 70(1), 23–30. https://doi.org/10.1093/biosci/biz140
- Maitner, B., Gallagher, R., Svenning, J. -C., Tietje, M., Wenk, E. H., & Eiserhardt, W. L. (2023). A global assessment of the Raunkiæran shortfall in plants: Geographic biases in our knowledge of plant traits. *New Phytologist*, 240(4), 1345–1354. https://doi.org/10.1111/nph. 18999
- Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in global plant occurrence information. *Ecology Letters*, 19(8), 992–1006. https://doi.org/10.1111/ele.12624
- Mikryukov, V., Dulya, O., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., Delgado-Baquerizo, M., Maestre, F. T., Nilsson, H., Pärn, J., Öpik, M., Moora, M., Zobel, M., Espenberg, M., Mander, Ü., Khalid, A. N., Corrales, A., Agan, A., ... Tedersoo, L. (2023). Connecting the multiple dimensions of global soil fungal diversity. Sciences Advances, 9(48), eadj8016. https://doi.org/10.1126/sciadv.adj8016
- Mueller, G. M., Cunha, K. M., May, T. W., Allen, J. L., Westrip, J. R. S., Canteiro, C., Costa-Rezende, D. H., Drechsler-Santos, E. R., Vasco-Palacios, A. M., Ainsworth, A. M., Alves-Silva, G., Bungartz, F., Chandler, A., Gonçalves, S. C., Krisai-Greilhuber, I., Iršėnaitė, R., Jordal, J. B., Kosmann, T., Lendemer, J., ... Dahlberg, A. (2022). What do the first 597 global fungal Red List assessments tell us about the threat status of fungi? *Diversity*, 14(9), 736. https://doi.org/10.3390/d14090736
- National Academies of Sciences, Engineering & Medicine. (2020). Biological collections: Ensuring critical research and education for the 21st century. The National Academies Press.
- Niskanen, T., Lücking, R., Dahlberg, A., Gaya, E., Suz, L. M., Mikryukov, V., Liimatainen, K., Druzhinina, I., Westrip, J. R. S., Mueller, G. M., Martins-Cunha, K., Kirk, P., Tedersoo, L., & Antonelli, A. (2023). Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. *Annual Review of Environment and Resources*, 48(1), 149–176. https://doi.org/10.1146/annurevenviron-112621-090937
- Ondo, I., Dhanjal-Adams, K. L., Pironon, S., Silvestro, D., Colli-Silva, M., Deklerck, V., Grace, O. M., Monro, A. K., Nicolson, N., Walker, B., & Antonelli, A. (2024). Plant diversity darkspots for global collection priorities. New Phytologist. https://doi.org/10.1111/NPH.20024

- Ortiz-Moreno, M., Moncada, B., Vasco-Palacios, A. M., de Almeida, R. F., & Gaya, E. (2022). Fungi in Colombian and international biological collections. In R. F. de Almeida, A. M. Vasco-Palacios, R. Lucking, R. E. Gaya, & M. Diazgranados (Eds.), Catalogue of fungi of Colombia (pp. 189–207). Royal Botanic Gardens, Kew, Available from: https:// kew.iro.bl.uk/concern/books/dbea3dfc-8738-44a1-8ea5fh9400a3d241
- Ovaskainen, O., Abrego, N., Furneaux, B., Hardwick, B., Somervuo, P., Palorinne, I., Andrew, N. R., Babiy, U. V., Bao, T., Bazzano, G., Bondarchuk, S. N., Bonebrake, T. C., Brennan, G. L., Bret-Harte, S., Bässler, C., Cagnolo, L., Cameron, E. K., Chapurlat, E., Creer, S., ... Roslin, T. (2024). Global spore sampling project: A global, standardized dataset of airborne fungal DNA. Scientific Data, 11(1), 561. https://doi. org/10.1038/s41597-024-03410-0
- Pironon, S., Ondo, I., Diazgranados, M., Allkin, R., Baquero, A. C., Cámara-Leret, R., Canteiro, C., Dennehy-Carr, Z., Govaerts, R., Hargreaves, S., Hudson, A. J., Lemmens, R., Milliken, W., Nesbitt, M., Patmore, K., Schmelzer, G., Turner, R. M., van Andel, T. R., Ulian, T., ... Willis, K. J. (2024). The global distribution of plants used by humans. 383(6680), 293-297. https://doi.org/10.1126/science. adg8028
- Ramírez-Castañeda, V., Westeen, E. P., Frederick, J., Amini, S., Wait, D. R., Achmadi, A. S., Andayani, N., Arida, E., Arifin, U., Bernal, M. A., Bonaccorso, E., Bonachita Sanguila, M., Brown, R. M., Che, J., Condori, F. P., Hartiningtias, D., Hiller, A. E., Iskandar, D. T., Jiménez, R. A., ... Tarvin, R. D. (2022). A set of principles and practical suggestions for equitable fieldwork in biology. Proceedings of the National Academy of Sciences, 119(34), e2122667119. https://doi.org/ 10.1073/pnas.2122667119
- Rudbeck, A. V., Sun, M., Tietje, M., Gallagher, R. V., Govaerts, R., Smith, S. A., Svenning, J. -C., & Eiserhardt, W. L. (2022). The Darwinian shortfall in plants: Phylogenetic knowledge is driven by range size. Ecography, 2022(8), e06142. https://doi.org/10.1111/ecog.06142
- Schindel, D. E., & Cook, J. A. (2018). The next generation of natural history collections. PLoS Biology, 16(7), e2006125. https://doi.org/10.1371/ journal.pbio.2006125
- ter Steege, H., Haripersaud, P. P., Bánki, O. S., & Schieving, F. (2011). A model of botanical collectors' behavior in the field: Never the same

- species twice. American Journal of Botany, 98(1), 31-37. https://doi. org/10.3732/ajb.1000215
- Villani, M., Moreno, C., & Furci, G. (2023). Ethnomycology Ethical Guidelines. Available from: https://assets.ffungi.org/ethicalguidelines.pdf
- Williams, C., Walsh, A., Vaglica, V., Sirakaya, A., da Silva, M., Dalle, G., Winterton, D., Annecke, W., Smith, P., Kersey, P. J., Way, M., Antonelli, A., & Cowell, C. (2020). Conservation policy: Helping or hindering science to unlock properties of plants and fungi. Plants, People, Planet, 2(5), 535-545. https://doi.org/10.1002/ppp3.10139
- Wu, R., Zou, Y., Liao, S., Shi, K., Nan, X., Yan, H., Luo, J., Xiang, Z., & Bao, Z. (2024). Shall we promote natural history collection today?—Answered by reviewing Ernest Henry Wilson's plant collection process in China. Science of the Total Environment, 915, 170179. https://doi.org/10. 1016/j.scitotenv.2024.170179
- Zizka, A., Rydén, O., Edler, D., Klein, J., Perrigo, A., Silvestro, D., Jagers, S. C., Lindberg, S. I., & Antonelli, A. (2021). Bio-Dem, a tool to explore the relationship between biodiversity data availability and socio-political conditions in time and space. Journal of Biogeography, 48(11), 2715-2726. https://doi.org/10.1111/jbi.14256

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Antonelli, A., Teisher, J. K., Smith, R. J., Ainsworth, A. M., Furci, G., Gaya, E., Gonçalves, S. C., Hawksworth, D. L., Larridon, I., Sessa, E. B., Simões, A. R. G., Suz, L. M., Acedo, C., Aghayeva, D. N., Agorini, A. A., Al Harthy, L. S., Bacon, K. L., Chávez-Hernández, M. G., Colli-Silva, M., ... Williams, C. (2025). The 2030 Declaration on Scientific Plant and Fungal Collecting. Plants, People, Planet, 7(1), 11-22. https://doi.org/10.1002/ppp3.10569